
ITAndroids 2D Soccer Simulation
Team Description Paper 2024

Davi M. Vasconcelos, Luiz F. B. Ramos, Marcos R. O. A. Maximo, Nean
Segura, and Vinícius F. Almeida

Aeronautics Institute of Technology,
São José dos Campos, São Paulo, Brazil

{davi.muniz41,ramosbrito2004,seguranean,vinifreitas.d.a}@gmail.
com,mmaximo@ita.br

itandroids-soccer2d@googlegroups.com
http://www.itandroids.com.br/

Abstract The ITAndroids 2D Soccer Simulation team is composed of
undergraduate students of the Aeronautics Institute of Technology. This
paper explores three topics: defensive behavior for 1-versus-1 situations
with Deep Reinforcement Learning, improvement of the goalkeeper’s po-
sitioning, and influence of the librcsc’s version on the agent2d perfor-
mance. The developed defensive behavior outperformed agent2d in the
presented task. The novel goalkeeper’s implementation dramatically de-
creased the loss rate of ITAndroids against RoboCIn. Furthermore, the
agent2d performance considerably depended on the librcsc’s version: the
latest agent2d running with the most updated librcsc release achieved a
win rate of 71.6% against agent2d 3.1.0 with librcsc 4.1.0.

1 Introduction

ITAndroids is a competitive robotics team from Aeronautics Institute of Tech-
nology reestablished in 2011. The group participates in the following leagues:
RoboCup Soccer Simulation 2D (RCSS2D), RoboCup Soccer Simulation 3D,
RoboCup Humanoid Kid-Size, IEEE Humanoid Robot Racing, IEEE Very Small
Size, and RoboCup Small Size League.

Our RCSS2D team, ITAndroids 2D, has continuously participated in the
Latin American Robotics Competition (LARC) and Brazilian Robotics Com-
petition (CBR – acronym for Competição Brasileira de Robótica) since 2011.
ITAndroids 2D competed in RoboCup from 2012 to 2023, except in 2014 and
2020. Table 1 shows the placements in these competitions.

2 Previous Works

Our code base uses agent2d [1] as the base team. Since 2011, we focused on
improving mechanisms already present in the agent2d framework. We improved
the action chain evaluator with Particle Swarm Optimization (PSO) [2]. Further-
more, we developed heuristics [3] to increase attack and defense performance:

http://www.itandroids.com.br/


2 ITAndroids 2D Soccer Simulation Team Description Paper 2024

Table 1: Placements of ITAndroids 2D in the previous RoboCup and LARC
competitions.

Year RoboCup LARC
2023 10th 3rd
2022 11th 3rd
2021 11th 5th
2020 — 4th
2019 13th 1st
2018 9th 2nd
2017 15th 3rd
2016 13th 2nd
2015 13th 1st
2014 — 1st
2013 13th 1st
2012 10th 1st

type of formation (attack or defense) selection based on probability of scoring
a goal, field evaluator selection based on opponent team, and defender opti-
mal marking in opponent attack situations. Many early improvement ideas were
inspired by HELIOS [4] and Nemesis [5].

The team proposed in 2018 a novel technique to determine the in-game ball
possession [6]. We used a Finite-State Machine called Possession Automaton
that takes into account the current and the last game situations to infer the ball
possession. Since we do not estimate ball possession based on a single game cycle,
we obtained a classification accuracy 18% higher than the default estimator of
the base team.

We experimented with Deep Reinforcement Learning (DRL) techniques to
improve the goalkeeper defense in penalty situations [7]. After five training ex-
periments using the Proximal Policy Optimization (PPO) algorithm, we achieved
a penalty defense rate of 40% against agent2d, twenty percent higher than the
base team rate.

Our current efforts are developing individual defensive behaviors with DRL
and improving the goalkeeper due to changes in the RoboCup Soccer Simulator
Server (RCSSServer). We also investigated the influence of the librcsc’s version
on the performance of agent2d.

Several authors explored the development of individual behaviors with Re-
inforcement Learning (RL) and DRL in the RCSS2D domain. Gabel and Ried-
miller [8] presented an RL ball interception behavior with approximately the
same performance as a hand-made behavior. Gabel, Riedmiller, and Trost [9]
developed a defensive behavior for 1-versus-1 situations with RL techniques.
Carvalho and Oliveira [10] achieved a successful rate of 58% in the dribbling
task against a single opponent. Zare et al. [11] demonstrated the capability of
DRL algorithms to learn a 2-versus-1 defense task, where a single learning agent
cooperates with its goalkeeper to protect the goal from the opponent with the
ball.



ITAndroids 2D Soccer Simulation Team Description Paper 2024 3

3 Defensive Behavior with Deep Reinforcement Learning

Davi Vasconcelos [12], member of ITAndroids 2D, extended the work of Thomas
Gabel, Martin Riedmiller, and Florian Trost [9] by learning the defense task
with state-of-the-art DRL algorithms. In this section, we summarize the learning
experiment and outline the main results of this work.

The defense task consists of two players, the learning agent and the opponent,
where the learning player must get the ball from the opponent by tackling or
kicking it. Table 2 describes the possible outcomes for the episode, where p0 is the
minimum catch probability for success, km is the kick margin, pr is the player’s
radius, br is the ball’s radius, kt is a tolerance added for short opponent’s kicks,
d0 is the minimum distance between learning agent and opponent for failure, and
Cmax is the number of cycles for a timeout. The success outcome arises when
the player can issue the kick or tackle commands, the latter with a minimum
probability of 0.8. The wrong outcome occurs when the opponent panics and
kicks the ball away. The failure outcome happens when the opponent is too far
from the learning player or the episode reaches the time limit and the opponent
has the ball possession.

Table 2: Summary of the possible outcomes with their respective conditions for
the presented task.

Outcome Condition Parameters

Success ptackle ≥ p0 or p0 = 0.8
km = 0.7
pr = 0.3
br = 0.085
kt = 1.0
d0 = 7

Cmax = 35

d(ball,player) < km + pr + br

Wrong
ball is out of field or

d(ball, opponent) > dw where
dw = km + kt + pr + br

Failure
d(player, opponent) > d0 or

(cycle = Cmax and
d(ball, opponent) ≤ dw)

Timeout cycle = Cmax

In contrast to [9], we limited the training region to the midfield. The learning
agent started in a random position inside a square of side 1.2 and center (0, 0)
with random velocity and body angle. The opponent initialization and observa-
tion space are as in [9]. We chose an action space of 144 elements. We obtained
36 turn actions by discretizing the interval (−180◦, 180◦] using a 10◦ step. Like-
wise, we got 108 dash actions by discretizing the direction interval (−180◦, 180◦]
with a step of 10◦ for each power in {30, 60, 100}. Furthermore, we applied the
reward function

r(s, a) =


10 if s ∈ Ss

−10 if s ∈ Sf

−0.01 if d(p,m) < 2

−0.25 otherwise.

, (1)



4 ITAndroids 2D Soccer Simulation Team Description Paper 2024

where Ss is the set of successful states, Sf is the set of failure states, p is the
player’s position, m is the mean between the opponent’s position and ball’s
position, and d(p,m) is the distance between p and m. Reward engineering was
needed since the agent did not learn as expected without it after several runs.

We developed a custom tool in C++ and Python to execute the training.
The learning agent is librcsc-based and exchanges messages with the Python
program by sending observations and requesting actions through Protobuf over
a TCP socket. The Python program implements an OpenAI Gym [13] and uses
the RLlib package [14] for the training algorithms. We selected the Rainbow
algorithm [15] for training and excluded part of its features due to computational
time limitations. We kept the following Rainbow’s improvements over the Deep
Q-Networks (DQN): Prioritized Experience Replay, Double DQN, and Dueling
DQN. For the action-value function approximation, we used four layers of 256
neurons for the advantage and value networks and one layer of 256 neurons for
the combiner layer.

We ran three independent runs of 5M time steps for the opponents Thunder-
League and YuShan in full-state mode. Figure 1 depicts the learning curves. The
mean reward converged to a positive value with reasonably low variance, which
suggests stable learning. Figure 2 shows the cumulative average of the outcome
rates for the runs in Figure 1. The number of episodes of each run differed as we
kept the maximum time step at 5M. Thus, we adjusted the time series before
plotting by cutting them at the size of the minimum time series between the
runs.

As shown in Figure 2, the success curves increased while the failure curves
decreased over time. The wrong curves initially increased but gradually decreased
after several episodes. At first, the agent does not know how to get closer to
the opponent. After it learns how to move toward the opponent, the opponent’s
panic cases increase. Later, the agent learns to get closer to the opponent without
leading to the opponent’s panic, which reduces wrong outcomes.

Table 3 presents the performance of the trained models and agent2d against
ThunderLeague and Yushan in the defense task. πtl and πys represent the policy
obtained after training against ThunderLeague and YuShan, respectively. We
randomly selected the policies from the respective runs previously presented.
The learned policies outperformed agent2d by a large margin. A satisfactory
generalization was obtained as the success rates of the policies were nearly equal.
Both opponents are agent2d-based teams, which explains the generalization to
a certain degree. We tried to evaluate the models against teams not based on
agent2d (FRA-UNIted and Oxsy), but we could not run their binaries.

A demonstration video is available at https://www.youtube.com/watch?
v=slMQXwzra5Y. The video shows the policy before and after training against
YuShan.

4 Goalkeeper Fixes and Improvements

The RCSSServer underwent significant changes in version 17. The dash and catch
models were modified. An agent can no longer issue a negative dash power to

https://www.youtube.com/watch?v=slMQXwzra5Y
https://www.youtube.com/watch?v=slMQXwzra5Y


ITAndroids 2D Soccer Simulation Team Description Paper 2024 5

0 1M 2M 3M 4M 5M

Environment Steps

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

M
ea

n
R

ew
ar

d

(a) Soccer player learns against
ThunderLeague.

0 1M 2M 3M 4M 5M

Environment Steps

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

M
ea

n
R

ew
ar

d

(b) Soccer player learns against
YuShan.

Figure 1: Learning curve against ThunderLeague and YuShan. The shaded re-
gion represents the 95% confidence interval for the episode’s mean reward in
three runs of 5M environment steps. We evaluated the moving mean using 1000
environment steps.

(a) Soccer player learns against
ThunderLeague.

(b) Soccer player learns against
YuShan.

Figure 2: Cumulative average of the outcome rates against different opponents.
The shaded region represents two times the standard error around the mean for
the runs of Figure 1.



6 ITAndroids 2D Soccer Simulation Team Description Paper 2024

Table 3: Outcome rates after running the trained models and agent2d against
two opponents in full-state mode. We estimated the rates in 50K episodes.

Opponent Player Success Failure Wrong

ThunderLeague
πtl 35.47% 1.69% 62.84%
πys 35.52% 2.30% 62.18%

agent2d 13.98% 25.80% 60.22%

YuShan
πtl 32.25% 2.00% 65.75%
πys 33.23% 2.16% 64.61%

agent2d 19.65% 51.15% 29.20%

accelerate backward. Consequently, this modification broke most doDash calls,
especially for the goalkeeper, when agents attempted to execute a back dash.

In the latest simulator’s version, the omnidirectional dash model should be
used to accelerate backward by selecting a dash angle of 180°. Hence, we changed
the doDash calls to the omnidirectional model to fix the back dashes.

The goalkeeper of agent2d tries to maintain the same y-coordinate as the ball
— restricted to the goalposts. Thus, the goalkeeper leaves a significant space free,
notably when the ball is close to the goal.

We present a novel goalkeeper heuristic by considering how a goalkeeper
should behave in real soccer matches. When our team attacks on the oppo-
nent’s side, the goalkeeper should be advanced, preventing the opponent mid-
field from completing a line-breaking pass between our defensive line, creating
a goal-scoring opportunity. When our team is defending, the goalie should be
positioned to cover the goal with the widest angle possible — which was not
implemented in agent2d.

With these requirements in mind, we modeled the goalkeeper’s position ac-
cording to the Bisector Intersection Positioning (BIP). The BIP operates as
follows: first, we calculate the x-coordinate of a vertical line as the weighted
average of the ball’s x-coordinate and pitch half-length. Next, we evaluate the
bisector of the angle determined by the left goal post, ball, and right goal post.
Finally, we set the goalkeeper’s position to the intersection between the bisector
and vertical line. Furthermore, we manually adjusted extreme positions, such as
the ball being inside the goal box, to minimize the angle for attacking opponents
as much as possible.

Table 4 shows the performance of ITAndroids against RoboCIn after and
before the cited changes in 500 matches. We also modified the team formation,
improving the defense formation. The loss rate dramatically decreased.

Table 4: Performance of ITAndroids against RoboCIn before and after the im-
provements in 500 matches.

Version Win rate Loss rate Draw rate
Before changes 4.8% 86.6% 8.6%

After changes 11.4% 49.2% 39.4%



ITAndroids 2D Soccer Simulation Team Description Paper 2024 7

5 Impact of librcsc’s Version on Team Performance

The agent2d base team has considerable functionalities implemented in the li-
brcsc [1]. The librcsc provides a collection of classes and methods useful for
any soccer player of the RoboCup 2D Soccer Simulation League. It also contains
mathematical models of the RCSSServer: the success probability of a tackle com-
mand issued by an agent, for instance. Hence, the usage of an outdated librcsc
may reduce the team performance due to changes in the RCSSServer.

Our team uses the librcsc 4.1.0 along with agent2d 3.1.0. Since the comeback
of ITAndroids 2D in 2011, we have not updated both software. Furthermore, we
decided to mix the source codes of librcsc and agent2d in a single repository
to facilitate improvements in the librcsc. However, previous members modified
librcsc’s files without properly specifying the changes on them. Therefore, up-
dating our librcsc is not a trivial task because we will need to track those mod-
ifications and apply them in novel files. Before doing such laborious work, we
investigated the relevance of different versions of librcsc to the performance of
agent2d.

We compared the source codes of two versions of agent2d: 3.1.0 and the
latest release on GitHub, which is called support-v18. Both code bases are nearly
identical. We did not identify significant changes but minor refactoring. Hence,
any noticeable performance difference between the teams could be explained by
changes in the librcsc. The support-v18 version used the librcsc release of the
same name, whereas the 3.1.0 version used the librcsc 4.1.0.

We ran 500 matches between the teams without extra time and penalties
in RCSSServer 18.1.3. Table 5 contains the match results. The most updated
agent2d release outperformed agent2d 3.1.0 with a win rate of 71.6%. Thus, the
librcsc’s version had a tremendous impact on team performance.

Table 5: Performance of agent2d support-v18 against agent2d 3.1.0 in 500
matches.

Win rate Loss rate Draw rate
71.6% 12.0% 16.4%

6 Conclusions and Future Work

This paper presented the recent efforts of ITAndroids 2D. We developed a de-
fensive behavior using DRL for 1-versus-1 situations. Also, we switched the dash
calls to the omnidirectional model and reworked the default implementation of
the goalkeeper positioning of the agent2d. Furthermore, we measured the impact
of the librcsc’s version on the agent2d team performance. In the future, we aim
to run the learning experiment with other DRL algorithms, update our librcsc,
and deploy the learned defensive behavior.



8 ITAndroids 2D Soccer Simulation Team Description Paper 2024

7 Acknowledgements

We would like to acknowledge the RoboCup 2D Soccer Simulation community
for sharing their developments. In particular, we would like to acknowledge Hide-
hisa Akiyama for agent2d, librcsc, soccerwindow2, and fedit2 [1]. Finally, we ac-
knowledge our sponsors: Altium, CENIC, Field Pro, Intel, ITAEx, MathWorks,
Micropress, Neofield, Polimold, Rapid, SIATT, SolidWorks, STMicroelectronics,
Virtual Pyxis, and Visiona Space Technology.

References

[1] Hidehisa Akiyama and Tomoharu Nakashima. “HELIOS Base: An Open
Source Package for the RoboCup Soccer 2D Simulation”. In: The 17th
annual RoboCup International Symposium. July 2013.

[2] Fábio Mello et al. “ITAndroids 2D Soccer Simulation Team Description
2012” (2012).

[3] Felipe Coimbra et al. “ITAndroids 2D Soccer Simulation Team Description
Paper 2017” (2017).

[4] Hidehisa Akiyama and Hiroki Shimora. “HELIOS2010 Team Description”
(2010).

[5] Mehrab Norouzitallab et al. “Nemesis Team Description 2010” (2010).
[6] Felipe Coimbra and Lucas Lema. “ITAndroids 2D Soccer Simulation Team

Description 2018” (2018).
[7] Diego Fidalgo et al. “ITAndroids 2D Soccer Simulation Team Description

Paper 2020” (2020).
[8] Thomas Gabel and Martin Riedmiller. “Learning a Partial Behavior for a

Competitive Robotic Soccer Agent.” KI 20 (Jan. 2006), pp. 18–23.
[9] Thomas Gabel, Martin Riedmiller, and Florian Trost. “A Case Study on

Improving Defense Behavior in Soccer Simulation 2D: The NeuroHassle
Approach”. In: RoboCup 2008: Robot Soccer World Cup XII. Ed. by Luca
Iocchi et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 61–
72. isbn: 978-3-642-02921-9.

[10] Arthur Carvalho and Renato Oliveira. “Reinforcement learning for the
soccer dribbling task”. In: 2011 IEEE Conference on Computational Intel-
ligence and Games (CIG’11). IEEE, Aug. 2011. doi: 10.1109/cig.2011.
6031994. url: http://dx.doi.org/10.1109/CIG.2011.6031994.

[11] Nader Zare et al. “CYRUS 2D Simulation 2019. Team Description Paper”
(2019).

[12] Davi Vasconcelos. “Learning Individual Behaviors for Simulated Robot
Soccer”. B.Sc. Thesis. São José dos Campos: Aeronautics Institute of Tech-
nology, 2023.

[13] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].
[14] Eric Liang et al. RLlib: Abstractions for Distributed Reinforcement Learn-

ing. 2018. arXiv: 1712.09381 [cs.AI].
[15] Matteo Hessel et al. Rainbow: Combining Improvements in Deep Rein-

forcement Learning. 2017. arXiv: 1710.02298 [cs.AI].

https://doi.org/10.1109/cig.2011.6031994
https://doi.org/10.1109/cig.2011.6031994
http://dx.doi.org/10.1109/CIG.2011.6031994
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1712.09381
https://arxiv.org/abs/1710.02298

	ITAndroids 2D Soccer Simulation Team Description Paper 2024

